Visual traffic surveillance framework: classification to event detection

نویسندگان

  • Amol Ambardekar
  • Mircea Nicolescu
  • George Bebis
  • Monica N. Nicolescu
چکیده

Visual traffic surveillance using computer vision techniques can be noninvasive, automated, and cost effective. Traffic surveillance systems with the ability to detect, count, and classify vehicles can be employed in gathering traffic statistics and achieving better traffic control in intelligent transportation systems. However, vehicle classification poses a difficult problem as vehicles have high intraclass variation and relatively low interclass variation. Five different object recognition techniques are investigated: principal component analysis (PCA)+difference from vehicle space, PCA+difference in vehicle space, PCA+support vector machine, linear discriminant analysis, and constellation-based modeling applied to the problem of vehicle classification. Three of the techniques that performed well were incorporated into a unified traffic surveillance system for online classification of vehicles, which uses tracking results to improve the classification accuracy. To evaluate the accuracy of the system, 31 min of traffic video containing multilane traffic intersection was processed. It was possible to achieve classification accuracy as high as 90.49% while classifying correctly tracked vehicles into four classes: cars, SUVs/vans, pickup trucks, and buses/semis. While processing a video, our system also recorded important traffic parameters such as the appearance, speed, trajectory of a vehicle, etc. This information was later used in a search assistant tool to find interesting traffic events. © 2013 SPIE and IS&T [DOI: 10 .1117/1.JEI.22.4.041112]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Survey on Pedestrian Detection, Classification and Tracking

Detection of human beings with accuracy in visual surveillance systems is important for various application areas like remote and mobile monitoring, traffic monitoring, public safety and abnormal event detection. The first step in detection process is to detect the object which is in motion and further classify it and track the objects. The paper further directs towards the detection and tracki...

متن کامل

Petri Net Models for Event Recognition in Surveillance Videos

Title of Dissertation: Petri Net Models for Event Recognition in Surveillance Videos Nagia M. Ghanem, Doctor of Philosophy, 2007 Dissertation directed by: Professor Larry Davis Department of Computer Science Video surveillance is the process of monitoring the behavior of people and objects within public places, e.g. airports and traffic intersections, by means of visual aids (cameras) usually f...

متن کامل

Video Event Recognition and Anomaly Detection by Combining Gaussian Process and Hierarchical Dirichlet Process Models

In this paper, we present an unsupervised learning framework for analyzing activities and interactions in surveillance videos. In our framework, three levels of video events are connected by Hierarchical Dirichlet Process (HDP) model: low-level visual features, simple atomic activities, and multi-agent interactions. Atomic activities are represented as distribution of low-level features, while ...

متن کامل

Vehicle classification framework: a comparative study

Video surveillance has significant application prospects such as security, law enforcement, and traffic monitoring. Visual traffic surveillance using computer vision techniques can be non-invasive, cost effective, and automated. Detecting and recognizing the objects in a video is an important part of many video surveillance systems which can help in tracking of the detected objects and gatherin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2013